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1. Introduction

The resource-based view is one of the most in�uential conceptual frameworks in the �eld
of strategic management. This view asserts that competitive advantage is rooted in the pos-
session of valuable resources that are rare and di�cult to imitate (Wernerfelt, 1984; Barney,
1986, 1991; Dierickx and Cool, 1989; Mahoney and Pandian, 1992; Peteraf, 1993). Speci�c
asset positions also shape managerial and organizational procedures that a�ect �rms’ dy-
namic capabilities–that is, their capacity to adapt to changing environments– through their
impact on innovation performance and competition (Nelson and Winter, 1982; Teece and
Pisano, 1994; Teece, Pisano, and Shuen, 1997).

Teece (1986) builds on ideas from Schumpeter (1935, 1942), Arrow (1962), and
Williamson (1975) to show innovators may fail to capture the returns from an innovation if
they do not have access to key complementary resources, such as production and market-
ing capabilities. As an example, consider Sony’s pioneering development of electronic book
readers in the early 2000s. Sony introduced the Librie in Japan in 2004 and the PRS-500 in
the US in 2006. Amazon imitated the technical features of Sony’s e-readers and introduced
the Kindle in 2007. However, Sony’s book repository was signi�cantly smaller than Ama-
zon’s, which allowed Amazon to capture the e-reader market. As a consequence, Sony went
from industry leader to leaving the industry in less than seven years.1

Recent works present game-theoretical models to study how resource advantages arise
and are sustained (see, e.g., Makadok, 2001; Makadok and Barney, 2001; Pacheco-de Almeida
and Zemsky, 2007; Grahovac and Miller, 2009; Chatain and Zemsky, 2011; Almeida Costa,
Cool, and Dierickx, 2013; Chatain, 2014). The relation between innovation incentives and
the development of complementary resources, on the other hand, has been studied less from
a game-theoretical point of view, and is the main focus of this paper.

In this paper, I contribute to the resource-based view and dynamic-capabilities literatures
by studying the incentives to innovate, implement innovations, develop complementary
resources, and enter licensing agreements when a potential imitator has an initial advantage
in a complementary resource.

I consider a dynamic model in which an innovator invests in R&D to develop an inno-
vation and then decides the optimal time at which to bring the innovation to the market.
Innovation is probabilistic and the probability of success depends on the innovator’s re-
search e�ort. Initially, the innovator lacks a valuable complementary resource, which she

1Similarly, MapQuest introduced the �rst online map service but was imitated and surpassed by Google (which
provided a myriad of complementary services), and Joost introduced the �rst video-streaming service but was
imitated and unseated by Hulu (which provided more complementary content obtained from TV and movie
studios). See also the traditional examples of EMI, RC Cola, Xerox, and De Havilland in Teece (1986).

1



may develop by performing a costly investment. Resource development may involve the ac-
quisition of intangible assets, the embodiment of new knowledge, or the creation of routines,
all of which are time-consuming processes. Thus, the innovator may obtain the innovation
before or after she obtains the complementary resource.

Bringing the innovation to the market discloses its existence and makes it possible for a
rival �rm (imitator) to try to imitate it. The threat of imitation is particularly relevant, since
the imitator already owns the complementary resource, and would thus have a competitive
advantage if she was to imitate before the innovator obtains the complementary resource.
Therefore, the innovator may �nd it optimal to delay the implementation of a successful
innovation until she develops the complementary resource.

I present four main results. First, I show an innovator may �nd it optimal to invest to
develop and implement an innovation, even if the cost of imitation is low and the innova-
tion is likely to be imitated before the innovator obtains a position in the complementary
resource. This result contrasts with Teece’s (1986) assertion that innovators may be “so ill
positioned in the market that they necessarily will fail.” In fact, I show such “failure” may
be anticipated and optimally internalized by the innovator.

As an example, consider the Nintendo Wii gaming console, which was the �rst to include
a remote controller with the ability to detect movement in three dimensions. The Wii had
a less powerful processing engine than the PlayStation and Xbox, and Nintendo knew its
innovation would be rapidly copied by Sony and Microsoft. However, Nintendo found it
optimal to introduce its innovation and capture monopoly pro�ts until it was imitated.

Second, I show innovators are not helpless in the face of imitation, as they may optimally
respond to a greater threat of imitation by erecting barriers to imitation. In particular, I
show that if the cost of imitation is low and the imitator’s initial resource advantage is
large, the innovator �nds it optimal to delay the implementation of the innovation until she
obtains the complementary asset. As a consequence, a lower cost of imitation may actually
lead to a smaller probability of imitation. This result is absent in previous papers studying
resource development in the face of imitation, because they do not endogenize the barriers
to imitation.2

Third, I show that if technology licensing is possible, it may increase the probability of
innovation and reduce implementation delays.3 However, licensing may fail because the
2Pacheco-de Almeida and Zemsky (2007) show imitators may bene�t from reducing the informational spillover
they obtain from innovators because this enhances the innovator’s incentives to develop innovations, and
Grahovac and Miller (2009) show innovators may bene�t if the value of the resource they want to develop
is smaller because this may reduce imitation incentives. Neither paper studies the innovator’s incentives to
erect barriers to imitation. In contrast, I show a reduction in the cost of imitation may bene�t the imitator
because it lowers the innovator’s incentive to delay the implementation of an innovation.
3For easiness of exposition, I focus on technology licensing but other technology-sharing agreements—such
as a research joint venture or technology alliance—would lead to similar results.
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innovator may have incentives to keep the innovation secret, instead of licensing it to the
imitator.

The reason for this result is that approaching the imitator to negotiate a licensing agree-
ment discloses the existence of the innovation. If the innovation is easy to imitate, the in-
novator has a weak bargaining position in licensing negotiations, in which case she prefers
to keep the innovation secret and implement it on her own after she obtains the comple-
mentary resource, rather than licensing it to the imitator.

More surprisingly, I �nd licensing is more likely the larger the cost of imitation and the
smaller the imitator’s initial resource advantage. That is, I show licensing is more likely when
the innovator has a strong bargaining position (i.e., the imitator has a weak bargaining posi-
tion). This result is unexpected a priori because one would expect the innovator has more
incentives to license the innovation if the innovation is easier to imitate (that is, one would
expect licensing to be more likely when the innovator has a weak bargaining position).

Fourth, I show that a reduction in resource-development time increases the probability
the innovation is implemented with delay. This link between the development of valuable
resources and the implementation of complementary innovations had not been uncovered
by previous works, and is caused by the optimal implementation dynamics discussed above.

Altogether, the paper’s results suggest Sony employed a suboptimal strategy in the e-
reader market. As explained above, Sony attempted to capture the market without having
a strong position in the complementary resource. The above results imply that when con-
tracting is feasible, two other strategies dominate Sony’s adopted strategy: Sony could have
kept the innovation secret and wait until it obtained the complementary resource, or it could
have approached Amazon to negotiate a licensing agreement or technology alliance. Given
that in the case at hand it was almost impossible to keep the innovation secret while trying
to secure the distribution rights for thousands of books, the model suggests Sony’s optimal
strategy would have been to enter a technology-sharing agreement with Amazon.

The main contribution of this paper is to provide an integrated framework to study in-
novation, implementation, imitation, and licensing decisions in an imperfectly-competitive
market. In doing so, I formalize Teece’s (1986) analysis on the relationship of innovation
and complementary resources, and provide further insights not present in the foundational
works of the resource-based view and dynamic-capabilities literatures. In particular, I show
resource-development and innovation strategies should be jointly designed to consider how
external competition and imitation dynamics shape the �rm’s value creation and value cap-
ture potential. Providing this analysis is important because theory can make a signi�cant
contribution the development of management research, as articulated by Conner (1991),
Mahoney and Pandian (1992), and Adner, Pólos, Ryall, and Sorenson (2009), among others.
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1.1. Related literature. This paper builds upon the theory of resources (Wernerfelt, 1984;
Barney, 1986, 1991; Dierickx and Cool, 1989; Mahoney and Pandian, 1992; Peteraf, 1993) and
the theory of dynamic capabilities (Nelson and Winter, 1982; Teece and Pisano, 1994; Teece,
Pisano, and Shuen, 1997). In particular, the paper studies the how the incentives to innovate
are a�ected by the possession of complementary resources, an issue that was �rst studied by
Teece (1986). To the best of my knowledge, Teece’s (1986) ideas have not been formalized in
a game-theoretical framework. I show studying a game-theoretical model yields additional
insights that complement Teece’s initial analysis.

The paper is also related with economics and strategy papers studying innovation, im-
itation, and technology adoption. The innovation literature has focused on substitute rather
than complementary innovations (see, for example, Loury, 1979; Lee and Wilde, 1980; Gilbert
and Newbery, 1982; Reinganum, 1982). Some exceptions are Gilbert and Katz (2011), Ménière
(2008), Denicolò and Halmenschlager (2012), and D’Antoni and Rossi (2014), which focus on
understanding the incentives to develop complementary innovations. Other signi�cant con-
tributions are Adner and Kapoor (2010) and Adner (2012), which show innovation ecosys-
tems are important for developing complementary innovations. All these papers study com-
plementary inventions developed by di�erent �rms, and do not study imitation and imple-
mentation decisions. In contrast, I study the incentives of one �rm to develop and implement
an innovation and a complementary resource in the face of imitation.4

Most papers studying the relationship between innovation and imitation assume imita-
tion is exogenous, and focus on analyzing how imitation a�ects innovation incentives. Two
important exceptions are Cohen and Levinthal (1989, 1990) and Gallini (1992), which endo-
genize imitation activities. Cohen and Levinthal (1989, 1990) show R&D activities a�ect the
capacity to absorbe other �rms’ innovations. Gallini (1992) studies the e�ects of the patent
regime on the incentives to innovate and imitate in a model with costly imitation. I do not
consider absorptive capacity, and focus on �rms’ pro�tability. The strategic-adoption lit-
erature has studied the incentives to foreclose the market (Reinganum, 1981a,b; Fudenberg
and Tirole, 1985; Ruiz-Aliseda and Zemsky, 2006) and the incentives to be a second mover to
bene�t from imitation (Katz and Shapiro, 1987). I complement the analysis of these papers
by focusing on the incentives to delay the implementation (adoption) of an innovation to
prevent imitation.

The closest papers to mine are Almeida Costa and Dierickx (2005), Pacheco-de Almeida
and Zemsky (2007), and Grahovac and Miller (2009). Almeida Costa and Dierickx (2005)
4The paper is also related with the literature on cumulative innovation (Scotchmer, 1991, 1996; Green and
Scotchmer, 1995; O’Donoghue, 1998; Denicolo, 2000). This literature studies the optimal division of pro�ts
between sequential innovators, and assumes that one innovation is essential for the other, but not the other
way around. In Chen and Nalebu�’s (2006) terminology, innovations are one-way essential complements. In
the current paper, instead, the innovation and the complementary asset are not essential for each other.
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study the optimal deployment strategy for innovation, but do not study innovation incen-
tives, the timing of deployment, nor imitation. Pacheco-de Almeida and Zemsky (2007) and
Grahovac and Miller (2009) study how the incentives to develop a resource are a�ected by
the threat of imitation. I complement these papers by endogenizing the barriers to imitation,
and by studying the incentives to develop complementary resources.

2. The model

Two �rms, i = 1, 2, compete in periods t ≥ 0 to sell products to consumers.5 Firm 1 (the
innovator) has an idea for an innovation that she may develop by investing in R&D. Firm 2
(the imitator) has an initial competitive advantage due to her possession of an exclusive re-
source or capability. This resource is complementary to the innovator’s innovation, and �rm
1 may invest to develop such resource, thereby eliminating its competitive disadvantage.

The main di�erence between innovation and resource development is that innovation is
more uncertain than resource development. This di�erence re�ects the traditional distinc-
tion between research and development (see, e.g., Katz and Shapiro, 1987). Even though
resource development takes time, the �rm is more certain as to what needs to be done to
develop the resource (e.g., purchase assets, hire new employees, train existing employees,
etc.). Innovation, on the other hand, is a probabilistic endeavor: even though the innova-
tor may increase the probability of obtaining an innovation by increasing its investment in
R&D, it is di�cult to guarantee that an innovation will be obtained in a given period.

To model the di�erence between innovation and resource development in the simplest
possible way, I assume that developing the complementary resource is a deterministic but
time-consuming process, and that innovation is probabilistic. At time 0, the innovator
knows she will obtain the complementary asset at time T . In the �rst part of the paper,
I assume the resource-development deadline T is an exogenous parameter. In Section 5,
I consider time-compression diseconomies and endogenize the decision to accelerate the
complementary asset’s development (that is, I endogenize T ). Throughout the paper, I as-
sume the innovator incurs in a small (negligible but positive) cost every period while she
develops the complementary asset, which she can avoid if she halts development before
obtaining the complementary resource.

At time t , the innovator obtains the innovation with probabilitypt by incurring in an R&D
cost of λp2t , where λ is a positive parameter. To focus on innovation and imitation dynamics,
I assume that the innovator is the only �rm with the capacity and knowledge necessary

5The in�nite-time horizon assumption is not essential for the results of the paper. The main advantage of
this assumption is that it allows me to avoid end-of-period e�ects. The model can be easily reinterpreted as a
�nite-horizon model with stochastic end by interpreting the discount factor as the probability the game lasts
one more period.
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to develop the innovation, and that the imitator does not learn about the existence of the
innovation until it is implemented (that is, until the products that embed the innovation
are introduced in the market). As I explain below, the discount factor can be interpreted
as the probability that a superior innovation is introduced in the market—either before or
after the focal �rm innovates—rendering the �rm’s innovation obsolete. Thus, the discount
factor represents the intensity of competition in the market for innovations.

After the innovation is implemented, the imitator can invest in R&D to imitate it. At
time t , the imitator imitates the innovation with probability qt by incurring in an R&D cost
of µ q2t , where µ is a positive parameter. I assume λ > 1 and µ > α

2 (1−δ ) to guarantee the
existence of interior solutions to the R&D investment problems.

Given that implementing an innovation discloses its existence to the imitator, the inno-
vator may have incentives to delay the implementation of an innovation. Therefore, after
she innovates, the innovator must decide at which time to implement the innovation.

Firm 2’s has zero marginal costs of production. Firm 1’s marginal cost is α ∈ [0, 1] before
she obtains the complementary asset, and is zero after she obtains the complementary asset.
Thus, α represents the value of the imitator’s initial resource advantage.

Each period, �rms sell goods to a continuum of consumers of mass 1. Consumers have
unit demands and are willing to pay ω > α for a good without an innovation and ω′ > ω

for a unit of a good with an innovation. Without loss, I normalize the innovation’s impact
on the willingness to pay to unity, so ω′ = ω + 1.6

Given that consumers are homogeneous, Bertrand competition implies the market is
winner-take-all. Thus, I focus on competition for the market and abstract from competi-
tion in the market. Clearly, this assumption is a good �t for many markets—such as the
e-reader market described in the introduction—but less of a good �t in the case of other
markets. Similar results would be obtained in a model with competition in the market, but
analytical expressions and intuitions would be signi�cantly more complex. The present pa-
per intends to be a �rst step in the study of innovation and resource development under
competition. Thus, I leave the extension of the paper’s results under coexistence for future
research.

Consumer utility equals willingness to pay minus price. A �rm’s per-period pro�t is equal
to product-market revenues minus production costs and R&D expenditures. Firms discount
future payo�s with a common discount factor δ ∈ [0, 1). As noted, the discount factor may
be not only related to subjective payo� discounting, but also to the probability the market
6For easiness of exposition, I assume the complementary resource a�ects production costs. For example,
the resource may be related to manufacturing capabilities and organizational routines that a�ect the �rm’s
variable cost of production. It would be straightforward to modify the model to allow for initial di�erences
in product quality. For example, it may be assumed that the complementary resource increases consumers’
willingness to pay in α . Results would be analogous with this alternative speci�cation.
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for the innovation ends due to the change in consumer preferences, or to the probability a
superior innovation is introduced in the market.

Within each period, �rms play a four-stage game. First, if �rm 1 has not innovated, she
chooses its investment in R&D and the innovation outcome is realized. Second, if �rm 1 has
obtained but not implemented the innovation, she decides whether to implement it. Third,
if �rm 1 has implemented the innovation and �rm 2 has not imitated, �rm 2 chooses her
investment in R&D and the imitation outcome is realized. Fourth, �rms compete in prices.
Figure 1 summarizes gameplay within each period. The solution concept is subgame-perfect
equilibrium.

Firm 1 invests in
R&D and innovation
outcome is realized

Firm 1 decides
whether to implement

the innovation

Firm 2 invests in
R&D and imitation
outcome is realized

Firms compete
in prices and
obtain payo�s

Figure 1. Timing within each period.

3. Solution of the model

In this section, I provide an informal discussion of the main results of the basic model.
For technical details–along with proofs–see Appendix A. I begin by providing a short de-
scription of the steps needed to solve the model.

The model is solved by backward induction, and I begin by considering price compe-
tition. At any given period, equilibrium prices and pro�ts depend on the possession of
the innovation and the complementary resource. Table 1 presents equilibrium prices and
product-market pro�ts (revenues net of production costs).7

Second, I consider the innovator’s optimal R&D investment at a decision node after she
obtains the complementary resource. Such decision node would be reached if the innovator
failed to innovate before obtaining the complementary resource.

Third, I consider the imitator’s optimal R&D investment at a decision node after the inno-
vator implements the innovation. After the innovator obtains the complementary resource,

7If at time t both �rms have the complementary asset and either both or none have the innovation, �rms are
in competitive parity, equilibrium price is equal to marginal cost (zero), and �rms obtain zero pro�ts. If �rm 2
has a resource advantage and �rm 1 has not implemented the innovation, equilibrium price is equal to �rm 1’s
marginal cost, �rm 2 has a pro�t of α , and �rm 1 has a pro�t of zero. If �rm 1 has implemented the innovation
and �rm 2 has a resource advantage, �rm 1 chooses a price of 1 and obtains a pro�t of 1 − α , and �rm 2
chooses a price of 0 and obtains a pro�t of 0. If �rm 1 has implemented the innovation and has developed the
complementary asset, �rm 1 chooses a price of 1 and obtains a pro�t of 1, and �rm 2 chooses a price of 0 and
obtains a pro�t of 0. If �rm 1 has implemented the innovation and �rm 2 has imitated it, equilibrium price is
equal to α , �rm 2 has a pro�t of α , and �rm 1 has a pro�t of zero.

7



Firm 1 (innovator)

Has not implemented innovation Has implemented innovation

Does not have
complementary

asset

Has comple-
mentary
asset

Does not have
complementary

asset

Has
complementary

asset

Firm 2
(imitator)

Does not
have

innovation

r1t = r2t = α ,
F1t = 0, F2t = α

r1t = r2t = 0,
F1t = F2t = 0

r1t = 1, r2t = 0,
F1t = 1 − α ,
F2t = 0

r1t = 1, r2t = 0,
F1t = 1, F2t = 0

Has
innovation

r1t = r2t = α ,
F1t = 0, F2t = α

r1t = r2t = 0,
F1t = F2t = 0

Table 1. Equilibrium prices (rit ) and pro�ts (Fit ) in period t .

the imitator will not invest to imitate the innovation because in that case a successful im-
itation would only lead to competitive parity and zero pro�ts. Thus, the imitator’s R&D
investment can be positive only before T .

Fourth, I consider the innovator’s decision to implement the innovation at a decision node
after she obtains the innovation. This decision takes into account the imitator’s optimal
imitation e�ort if the innovation is implemented. Note it is always optimal to implement an
innovation immediately (in the same period it is obtained) if the innovation is obtained at or
after T , because in this case the imitator will not attempt to imitate it. The implementation
decision is more complex beforeT , because in this case, the innovator must balance a trade-
o� between current product-market revenues and risk of imitation.

Finally, I consider the innovator’s optimal R&D investment at a decision node before
she obtains the complementary resource. The optimal investment takes into account the
optimal implementation decision in case of a successful innovation, which, in turn, takes
into account the imitator’s optimal imitation e�ort.

Proposition 1 describes equilibrium dynamics. For a detailed proof, see Appendix A.

Proposition 1 (Equilibrium dynamics). An equilibrium exists and is unique. Equilibrium
dynamics are as follows.

Imitation dynamics: The probability of imitation increases as time t moves closer to
the resource-development deadline T , and is equal to zero after T .

Implementation dynamics: There exists a threshold µ̂ for the imitation cost parameter
µ such that if µ ≥ µ̂ the innovation is implemented immediately (in the same period it
is obtained), and if µ < µ̂, there exists a threshold t∗ < T such that the innovation is
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implemented with delay (at time T ) if it is obtained at t ∈ [t∗,T ) and is implemented
immediately otherwise.

Innovation dynamics: The probability of innovation is constant for t ≥ T . If the in-
novation is to be implemented immediately, the probability of innovation may increase
or decrease with t for t < T . If the innovation is to be implemented with delay, the
probability of innovation increases with t for t < T .

Pro�t dynamics: The innovator’s expected pro�t before innovation increases as time t
moves closer to the resource-development deadline T , and is constant afterwards. The
imitator’s expected pro�t before imitation decreases as t moves closer to T , and is zero
afterwards.

Proposition 1 has two main implications. First, the proposition shows an innovator may
�nd it optimal to invest to develop and implement an innovation, even if the cost of imitation
is low and the innovation is likely to be imitated before the innovator obtains a position in
the complementary resource.

This result contrasts with Teece’s (1986) assertion that innovators may be “so ill posi-
tioned in the market that they necessarily will fail.” Proposition 1 shows such “failure” may
be anticipated by and optimally internalized by the innovator; that is, the innovator may
implement the innovation even if she knows the innovation is likely to be imitated before
she obtains the complementary resource.

More strikingly, for some values of the parameters, an innovation will be brought to
market only if the date at which the innovator obtains the innovation is su�ciently far
away from the date she obtains the complementary resource, which actually implies the
innovation is very likely to be imitated. This result is interesting because at priori one would
expect the innovator to have incentives to implement the innovation only if the innovation
is unlikely to be imitated.

Second, the proposition shows innovators are not helpless in the face of imitation, as they
may respond to a greater threat of imitation by erecting barriers to imitation. If the cost
of imitation is low and the initial resource advantage of imitators is large, the innovator
will �nd it optimal to delay the implementation of the innovation until she obtains the
complementary asset.

As a consequence of this result, a decrease in the cost of imitation may actually decrease
the probability of imitation in equilibrium. This result is absent in previous papers study-
ing resource development in the face of imitation (Pacheco-de Almeida and Zemsky, 2007;
Grahovac and Miller, 2009), because they do not endogenize barriers to imitation.

In the following subsections I discuss the results of Proposition 1 in more detail. I begin
by considering imitation dynamics.
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Imitation dynamics. Imitation dynamics depend on the time available until the innovator
obtains the complementary resource. As the resource-development deadline nears, the need
to imitate becomes more imperative, and the imitator increases its investment in R&D.

In formal terms, the optimal imitation e�ort solves the following Bellman equation:

Wt = max
qt ∈[0,1]

(
qt

α

1 − δ + (1 − qt )δWt+1 − µ qt 2
)
,

where Wt is the imitator’s expected pro�t before imitation in period t .8 The “consolation
prize” of failing to imitate is the possibility of attempting an imitation in the next period,
which has a discounted value of δWt+1. Given that this continuation value decreases as the
deadlineT approaches (because the imitator’s expected pro�tWt is smaller the closer she is
to T ), the imitator’s investment incentives increase with t .

Implementation dynamics. Implementation dynamics are depicted in Figure 2. The hor-
izontal line represents the time at which the innovation is obtained. Proposition 1 shows
there exists an implementation threshold t∗ such that the innovator implements the inno-
vation immediately (in the same period she obtains it) if she innovates before this threshold,
and implements the innovation with delay if she innovates after this threshold.

Time at which
the innovation
is obtained (t )Beginning of

the game (t = 0)
Implementation
threshold (t∗)

Innovator obtains the
complementary resource (T )

Immediate
implementation

Delayed
implementation

Immediate
implementation

Figure 2. Implementation dynamics. The innovator implements the inno-
vation immediately if she obtains it before t∗ or after T . Otherwise, she im-
plements the innovation with delay.

The implementation decision is a�ected by a trade-o� between short-term and long-term
pro�tability: Implementing the innovation beforeT implies the innovator can obtain product-
market revenues earlier but, at the same time, enables imitation from rivals. If the innovator
innovates long before resource-development deadline, she prefers to implement the inno-
vation immediately and bene�t from having positive pro�ts in the short term, even though
doing so will probably mean the innovation will be imitated before she obtains the com-
plementary asset. If the innovator innovates close to the date at which she will obtain the

8To understand this equation, note that with probability qt , the imitator succeeds and obtains the discounted
�ow of future bene�ts α

1−δ , and with probability 1 − qt , the imitator fails and obtains the discounted continu-
ation value δWt+1. See Section A.2 for more details.
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complementary resource, she prefers to wait to prevent imitation and bene�t from future
pro�ts.

The resolution of this trade-o� depends on the imitation-cost parameter µ and the imita-
tor’s resource advantage α . If the imitation cost is large, the trade-o� is resolved in favor of
present pro�tability and the innovator implements any innovation immediately. If the imi-
tation cost is small, the implementation trade-o� is resolved in favor of future pro�tability
and the innovator delays the implementation of any innovation. For intermediate values,
the resolution of the trade-o� depends on how close the resource-development deadline is,
and the innovation is implemented only if the innovator is su�ciently far from T .9 Finally,
given an imitation cost, if the resource advantage is large (small), product-market revenues
are small (large) before T , and the innovator prefers to delay implementation (implement
immediately). Figure 3 illustrates these results.

Delay
implementation

Implement
immediately

Implement if
far from T

Small cost of
imitation (µ)

Large cost of
imitation (µ)

Small resource
advantage (α )

Large resource
advantage (α )

Figure 3. Implementation decision. If the imitator’s resource advantage is
large, the innovator implements the innovation with delay. If the cost of im-
itation is large, the innovator implements the innovation immediately. For
intermediate values of the parameters, the innovator implements the inno-
vation immediately only if she obtains it su�ciently far away from T .

9Formally, if µ is large, t∗ = T ; if µ is small, t∗ = 0; and for intermediate values of µ, 0 < t∗ < T .
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Innovation dynamics. Innovation dynamics depend on the innovator’s implementation
decision and on the imitator’s optimal imitation e�ort if the innovation is implemented
before T . The innovator’s investment solves the following Bellman equation:

Vt = max
pt ∈[0,1]

(
pt Yt + (1 − pt )δ Vt+1 − λpt 2

)
,

where Vt is the innovator’s expected pro�t before innovation, and Yt is the innovator’s ex-
pected pro�t for innovating at time t .

As the resource-development deadline nears, the pro�t from a successful innovation (Yt )
increases, which tends to increase the innovator’s R&D investment. However, asT becomes
closer, the continuation value from not innovating Vt+1 also increases, which tends to de-
crease investment. Thus, R&D investment may increase or decrease with t . In Appendix A,
I show this last result is only possible if the innovation would be implemented immediately
if it was obtained at t . If implementation would be delayed, the �rst e�ect is always larger
than the second, and the probability of innovation increases with t .

4. Licensing and technology transfer

In order to avoid spending time and resources to develop the complementary asset, the in-
novator can license the innovation to the imitator, purchase the complementary asset from
her, or create a technology alliance. Contracting with the imitator avoids these ine�cien-
cies, and can potentially increase expected pro�ts for both �rms.

For the innovator, an unwanted consequence of proposing a technology-sharing agree-
ment to the imitator is that the imitator learns of the innovation’s existence, and can try to
imitate it if �rms do not reach an agreement. Thus, the mere act of discussing a licensing
agreement, attempting to buy the complementary good, or proposing to create an alliance
a�ects �rms’ outside options and the value they capture in equilibrium.10

For concreteness, I assume that after the innovator innovates, she can o�er an exclusive
license to the imitator, and that �rms negotiate licensing terms a la Nash with equal bargain-
ing coe�cients. As in the previous section, I present an informal discussion. For technical
details and proofs, see Appendix B.

If the innovator innovates in period t < T , she can choose to implement the innovation
immediately, wait until a later time to implement it, or approach the imitator to discuss a
licensing agreement. In period T , the innovator obtains the complementary asset. Thus,
there is no room for contracting for innovations obtained in t ≥ T .

10For concreteness, I focus on the problems caused by information disclosure on the private desirability of
contracts (Arrow, 1962). Contracting may be di�cult for other reasons, such as the need for relationship-
speci�c investments (Williamson, 1975; Teece, 1986). Incorporating these assumptions in the analysis would
be straightforward and would not alter its main qualitative implications.
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Suppose the innovator innovates inT − 1. If the innovator o�ers a license to the imitator
and �rms reach an agreement, they create a joint total value of 1/(1 − δ ). If �rms fail to
reach an agreement, the best the innovator can do is to implement the innovation without
the complementary resource. If the innovation is not imitated, the innovator obtains 1 − α
in T − 1, and a �ow payo� of 1 from period T onwards. Therefore, the innovator’s outside
option is

O1
T−1 =

(
1 − q∗T−1

) (
1 − α + δ 1

1 − δ

)
,

where q∗T−1 is the equilibrium probability the imitator imitates the innovation. If bargaining
fails, the best the imitator can do is to try to imitate the innovation. If she imitates the
innovation, she obtains a �ow payo� of α , and if she fails she obtains zero (the imitator will
not invest to imitate the innovation in t ≥ T ). Thus, the imitator’s outside option is

O2
T−1 = max

qt ∈[0,1]

(
qt

α

1 − δ − µ q
2
t

)
.

It is straightforward to see the imitator’s optimal investment in R&D in case of no agree-
ment is q∗T−1 = α/(2µ(1 − δ )). Firm i’s bargaining payo� at T − 1 is

RiT−1 = O
i
T−1 +

1
2

(
1

1 − δ −O
1
T−1 −O2

T−1

)
.

Working with the above expressions, I obtain the innovator’s bargaining payo�:

R1
T−1 =

(
1 − α

2 µ (1 − δ )

) (
1 − α + δ

1 − δ

)
+
1
2

(
1

1 − δ −
(
1 − α

2 µ (1 − δ )

) (
1 − α + δ

1 − δ

)
− 1
4 µ

( α

1 − δ
)2)
.

Instead of o�ering a license to the imitator, the innovator can market the innovation on
her own (either at T − 1 or at T ), in which case the payo� from innovating would be the
same as in the previous section. If the payo� from self-implementation is larger than the
negotiated licensing payo�, the innovator prefers not to license. Clearly, this result is only
possible if the innovator would implement inT if licensing was not available, because if the
innovator would implement atT −1 without licensing, negotiating with the imitator always
yields a positive bargaining surplus.

If the innovator implements the innovation atT , she obtains a total payo� of 1/(1− δ ) in
that period. Thus, if the innovator obtains the innovation at T − 1 and implements it at T ,
she obtains a discounted payo� of δ/(1−δ ). Therefore, the innovator chooses to market the
innovation herself if δ/(1− δ ) > R1

T−1. Working with this inequality, I obtain Proposition 2.
See Appendix B for a proof. In what follows, recall µ̂ is given in Proposition 1.
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Proposition 2 (Licensing failure). Given δ > 1
4 , there exist α̃ ∈ (0, 1) and µ̃ ∈

(
1

2 (1−δ ), µ̂
)

such that if α > α̃ and µ < µ̃, the innovator prefers to implement an innovation obtained in
T − 1 in period T , rather than licensing it to the imitator.

Proposition 2 shows licensing may fail to materialize in equilibrium. Attempting to ne-
gotiate an agreement with the imitator discloses valuable information which a�ects the
innovator’s bargaining position. If the cost of imitation is small, the innovator anticipates a
weak bargaining position in its negotiations with the imitator, and thus prefers to keep the
innovation secret.

In the proof of Proposition 2, I show the threshold for the imitation cost that determines
the no-contracting result is

µ̃ =
α (2 − α (1 − 2δ ))
4 (2 − α) (1 − δ )2 ,

which implies the no-contracting result becomes more likely as the imitator’s resource ad-
vantage α or the discount factor δ become larger.

More surprisingly, Proposition 2 shows licensing is more likely to fail the smaller the cost
of imitation. This result goes against what a super�cial analysis would yield: one would ex-
pect that if the innovation is easier to imitate the innovator has more incentives to license it.
On the contrary, I show that if imitation is inexpensive, the innovator has a weak bargain-
ing position in the licensing negotiations, and thus, she prefers to refrain from licensing the
innovation. Similarly, I show licensing is more likely to fail the larger the imitator’s initial
resource advantage.

For innovations in t < T − 1, bargaining payo�s are more di�cult to obtain, because
outside options are determined recursively. In particular, the innovator’s best alternative to
an agreement in t < T − 1 is to implement the innovation in t and try to negotiate another
agreement in t + 1, and the imitator’s best alternative is to try to imitate the innovation in
t and, if she fails to imitate in t , try to negotiate another agreement in t + 1.

Bargaining payo�s Rit can be obtained iterating backwards from the ones obtained for
periodT − 1 (see Appendix B for details). Recall the decision to license is interesting only if
the innovation would be implemented with delay in the absence of licensing (that is, only
if t∗ ≤ t ≤ T − 1, where t∗ is the implementation threshold of Proposition 1).

The above result implies that, if the innovator chooses not to license in t , she does not
implement the innovation and must again decide whether to license the innovation in t + 1.
The payo� from licensing in t is R1

t , and the payo� from licensing in t + 1 is R1
t+1. Therefore,

δ R1
t+1 measures the value that the innovator captures in t if she waits to negotiate with the

imitator until t + 1.
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Figure 4 shows R1
t (solid blue line) and δ R1

t+1 (dashed green line) for di�erent values of
the parameters. If µ is large, then R1

t > δ R
1
t+1 for all t , and the innovator prefers to license

the innovation as soon as she obtains it. This is the case in Figure 4a, for example.11

If µ is small, then R1
t < δ R

1
t+1 for t close toT , in which case the innovator prefers to avoid

licensing negotiations. In Figure 4b, for example, δR1
t+1 < R1

t for t ≤ 6, so the innovator
licenses the innovation if she innovates at or before t = 6 and waits until T to implement
the innovation if she innovates at a later date.12

R1
t ,δR

1
t+1,

t
1 2 3 4 5 6 7 8 9 10

R1
t

δR1
t+1

10

9
9.4

(a) α = 0.75, δ = 0.9, µ = 100, T = 10.

R1
t ,δR

1
t+1,

t
1 2 3 4 5 6 7 8 9 10

R1
tδR1

t+1

10

9

7.2

(b) α = 0.75, δ = 0.9, µ = 10, T = 10.

Figure 4. Firm 1’s incentives to negotiate a licensing agreement.

The above analysis implies that for small µ, there exists a threshold t̃ ≥ t∗, such that
innovations are licensed only if they are obtained before t̃ . Figure 5 shows licensing dy-
namics (the licensing decision does not depend on t∗ or T , but I include these variables for
comparison with Figure 2).

Finally, it is interesting to re�ect on the positive e�ects of licensing, whenever it is an equi-
librium outcome. If licensing is an equilibrium outcome, then it increases the innovator’s
expected payo� from innovation, and thus, it increases innovation expenditures. Licens-
ing also improves implementation incentives: Innovations obtained in t ∈ [t∗, t̃) would be

11In Figure 4a, the payo� of implementing the innovation inT is R1
T = 10. Thus, the innovator obtains δR1

T = 9
inT − 1 if she waits untilT to implement the innovation. If the innovator licenses the innovation inT − 1, she
obtains a payo� of RT−1 = 9.4 which is larger than the discounted payo� of waiting, and thus the innovator
licenses the innovation in T − 1.
12In Figure 4b, if the innovator licenses the innovation atT − 1, she obtains RT−1 = 7.2, which is smaller than
the discounted payo� of waiting, δR1

T = 9, and thus the innovator prefers not to license the innovation.
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Time at which
the innovation
is obtained (t )Begining of

the game
(t = 0)

Implementation
threshold without

licensing (t∗)

Licensing
threshold (t̃)

Innovator obtains
the complementary

resource (T )

Licensing No licensing

Figure 5. Licensing dynamics. The innovator licenses the innovation if she
obtains it before t̃ . Otherwise, she implements the innovation on her own.

implemented with delay without licensing, and are implemented immediately with licens-
ing. Figure 6 illustrates this section’s results (the dashed lines represent the implementation
thresholds in the model without licensing).

No
licensing

License
immediately

License
if far from T

Low cost of
imitation (µ)

High cost of
imitation (µ)

Small resource
advantage (α )

Large resource
advantage (α )

Figure 6. Licensing decision. If the imitator’s resource advantage is large,
the innovator does not license the innovation. If the cost of imitation is large,
the innovator licenses the innovation immediately. For intermediate values
of the parameters, the innovator licenses the innovation only if she obtains
it su�ciently far away from T .

5. Incentives to invest in the complementary asset

In this section, I study equilibrium dynamics when the innovator can invest to reduce
the time at which she will obtain the complementary resource. Lowering the resource-
development time is generally costly due to time-compression diseconomies (Scherer, 1967;
Dierickx and Cool, 1989; Pacheco-de Almeida and Zemsky, 2007). Thus, assume obtaining
the complementary asset in periodT implies a �xed cost cT ≥ 0, which is non-increasing in
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T . The innovator chooses the development time before choosing its investment in R&D in
period t = 0, and then the game proceeds as in the previous sections.

I proceed in two steps. First, I study the e�ects of changes inT on innovation, implemen-
tation and imitation incentives. Second, I study the e�ects of changes in the parameters on
the optimal development time. As in the previous sections, I present an informal discussion.
For a technical analysis, see Appendix C.

Before presenting results, I introduce some useful de�nitions (see Appendix C for more
details). The overall probability of imitation is the probability the imitator imitates the in-
novator’s innovation at some period, and the probability of an implementation delay is the
probability that the innovator implements an innovation with delay.

For the next proposition, I focus on parameter values such that an innovation may be
implemented immediately or with delay, depending on when it is obtained (that is, 0 < t∗ <
T ). For a given value of the imitator’s initial resource advantage α , this result is obtained
for intermediate values of the imitation cost parameter µ.13

Proposition 3 (E�ects of a decrease in resource-development time). Suppose 0 < t∗ < T .
A unit decrease in the resource-development time increases the expected pro�t of the innovator,
decreases the overall probability of imitation, and increases the probability of an implementa-
tion delay.

A decrease in the resource-development time increases the expected pro�t of the inno-
vator at time 0. The innovator will be willing to invest to decrease the developing time if
the cost associated with this decrease is smaller than the increase in her expected pro�t. A
decrease in development time also lowers the probability the innovation will be imitated,
given that a smaller T gives the imitator less time to try to imitate the innovation.

A more interesting result is that a reduction in development time increases the probability
the innovation is implemented with delay. This link between the development of valuable
resources and the implementation of complementary innovations had not been uncovered
by previous works and is due to the optimal implementation dynamics studied in Section 3.
For intermediate values of the cost of imitation, the innovator implements the innovation
only if she is su�ciently far away fromT . LoweringT implies the innovation is more likely
to be obtained closer to the date at which the innovator obtains the complementary asset,
and thus, an implementation delay becomes more likely.

13If t∗ = T , the innovation is always implemented immediately (before and after the change inT ), in which case
the probability of an implementation delay is zero, and a unit reduction inT decreases the overall probability
of imitation. If t∗ = 0, the innovation is always implemented with delay if it is obtained before T (before
and after the change in T ), in which case the overall probability of imitation is zero, and a unit decrease in T
decreases the probability of an implementation delay.
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I now turn to the analysis of the e�ects of changes in the parameters on the optimal
development time. For tractability, I assume c0 > 0 and ct = 0 for t ≥ 1, and focus on the
choice between T = 0 and T = 1.

Proposition 4 (Optimal resource-development time). The optimal development time is weakly
increasing in the innovation-cost parameter λ. If µ ≥ µ̂, the optimal development time is weakly
decreasing in the imitator’s resource advantage α and weakly increasing in the imitation-cost
parameter µ. If µ < µ̂, the optimal development time is independent from α and µ, and is
weakly decreasing in the discount factor δ .

The result that the optimal development time is weakly increasing in λ is a consequence
of the complementarity of the investments in the innovation and the complementary asset:
a larger λ decreases the investment in R&D, which decreases the incentives to invest to
obtain the complementary asset sooner.

If µ ≥ µ̂, the innovator implements any innovation in the same period she obtains it.
Thus, regardless of whether T = 0 or T = 1, the innovator implements an innovation
she obtains at t = 0 in that same period. If T = 1, the payo� the innovator obtains from
implementing an innovation in t = 0 is smaller because: (1) at t = 0 the innovator does
not have the complementary resource, and (2) by implementing before T , there is a risk
the imitator imitates the innovation. As α increases, the payo� from early implementation
decreases and the probability of imitation at increases. Both e�ects decrease the expected
pro�t from innovation when T = 1 and have no impact when T = 0. Thus, as α increases,
the innovator has more incentives to speed up development of the complementary resource.
An increase in µ has the opposite e�ects.

Finally, if µ < µ̂, the change in δ increases the total payo� of having both the innovation
and the complementary asset, and thus increases the desirability of having the complemen-
tary asset. Although I have not been able to obtain a similar analytic result for the case
µ > µ̂, numerical simulations show the comparative statics with respect to δ extend to this
case (that is, an increase in δ weakly decreases the optimal development time).

6. Low cost of imitation

In previous sections, I assumed the imitation-cost parameter was large enough to guar-
antee the imitator’s pro�t maximization problem had an interior solution (i.e., q∗t ∈ (0, 1) for
all t ). In this section, I assume µ < α

2−δ , which implies the imitator’s maximization problem
has a corner solution: The imitation cost is so small that the imitator chooses to imitate with
probability 1. The solution of the model is otherwise analogous to that of previous sections.

In the following proposition, the overall probability of licensing is the probability that an
innovation is licensed from t = 0 onwards. See Appendix D for a proof.
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Proposition 5 (Low cost of imitation). If µ < α
2−δ , the probability of imitation is equal to 1

for all t < T . If the innovator innovates at time t < T and licensing is not possible, she always
implements the innovation with delay. If licensing is possible, there exists t̃ < T such that the
innovator licenses the innovation immediately if she innovates before t̃ , and implements the
innovation at T otherwise. The overall probability of licensing increases with the imitation-
cost parameter µ and decreases with the imitator’s resource advantage α . Given α , µ, andT , if
the discount factor δ is large enough, the innovation is never licensed.

If licensing is not possible, the innovator will not implement the innovation until she �n-
ishes development of the complementary asset, because she knows an implemented inno-
vation would be immediately imitated by the imitator. If licensing is possible, the innovator
will license the innovation only if her bargaining position is strong enough when negotiat-
ing with the imitator, which implies the cost of imitation has to be su�ciently large and the
resource advantage su�ciently small.

The assumption µ < α
2−δ allows for the study of the limit δ → 1 for �xed α and µ. When

the innovator licenses the innovation, she obtains only a fraction of the product-market
pro�ts. As δ increases, product-market revenues increase and the opportunity cost of wait-
ing to implement the innovation decreases. These e�ects make licensing less desirable for
the innovator, and if δ is large enough the innovator does not license the innovation at any
period. Likewise, licensing becomes less desirable as µ decreases or α decreases (see the
proof of Proposition 5 for details).

7. Conclusion

The resource-based view of the �rm is one of the main theoretical underpinnings of the
�eld of strategic management. In this paper, I contribute to this literature by studying how
the development of valuable resources interacts with the incentives to innovate and bring
to market complementary inventions.

I present a model in which an innovator invests in R&D to develop an innovation, and
then decides the optimal time at which to implement the innovation (i.e., introduce it in
the market). The return to the innovation depends on the possession of a complementary
asset, which the innovator does not have and needs to develop. The development of the
complementary asset is done under the threat of imitation from rivals that possess the com-
plementary resource, and thus would be in a position of advantage over the innovator if
they were to imitate the innovation before the innovator has the complementary asset.

I present four main results. First, I show an innovator may �nd it optimal to invest to
develop and implement an innovation, even if the cost of imitation is low and the innova-
tion is likely to be imitated before the innovator obtains a position in the complementary
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resource. This result contrasts with Teece’s (1986) assertion that innovators may be “so ill
positioned in the market that they necessarily will fail.” In fact, I show such “failure” may
be anticipated and optimally internalized by the innovator.

Second, I show barriers to imitation are endogenous and a�ected by competitive inter-
action. Thus, innovators are not helpless in the face of imitation. If the cost of imitation is
low and the initial resource advantage of imitators is large, the innovator will �nd it opti-
mal to delay the implementation of an innovation until she �nishes the development of the
complementary asset. As a consequence, a lower cost of imitation may actually lead to a
smaller probability of imitation.

Third, I show that licensing the innovation to a potential imitator may increase the proba-
bility of innovation and reduce implementation delays. However, licensing may fail because
the innovator may have a small bargaining power when negotiating a licensing agreement.
Therefore, the innovator may prefer to keep the innovation secret and wait until she has
the complementary resource to introduce it in the market, rather than approaching a poten-
tial imitator to negotiate a licensing agreement. Interestingly, I �nd that licensing is more
likely to fail the smaller the cost of imitation and the larger the imitator’s initial resource
advantage.

Fourth, I show that a reduction in the resource-development time increases the prob-
ability the innovation is implemented with delay. This link between the development of
valuable resources and the implementation of complementary innovations had not been
uncovered by previous works.

The main contribution of this paper is to provide an integrated framework to study inno-
vation, implementation, imitation, and licensing decisions. I formalize Teece’s (1986) anal-
ysis on the relationship of innovation and complementary resources, and provide further
insights not present in the foundational works of the resource-based view and dynamic-
capabilities literatures.

Appendix A. Solution of the basic model

In the following sections, I study innovation, imitation, and implementation decisions
at di�erent decision nodes. See the main text for the analysis of price competition. The
main results follow from lemmas 1, 2, and 3, which also contain some additional results not
included in the main text. I conclude by presenting the proof of Proposition 1.

A.1. Firm 1 has the complementary asset but has not innovated. Suppose the inno-
vator has not obtained the innovation, and is choosing its innovation e�ort in t ≥ T .

As long as the innovator does not innovate, �rms are in competitive parity and both
obtain a pro�t of 0. If the innovator innovates and implements the innovation, the imitator
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will not invest in R&D because a successful imitation would only lead to competitive parity
and zero pro�ts. Thus, if the innovator innovates in period t ≥ T , she implements the
innovation immediately and obtains a discounted sum of payo�s of 1

1−δ .
Let Vt be the innovator’s expected pro�t in period t . For t ≥ T , Vt satis�es the following

Bellman equation:

Vt = max
pt ∈[0,1]

(
pt

1
1 − δ + (1 − pt )δ Vt+1 − λpt

2
)
.

The �rst order condition is
1

1 − δ − δ Vt+1 − λ 2pt = 0,

and the optimal probability of innovation at t is

p∗t =
1
2 λ

(
1

1 − δ − δ Vt+1
)
. (1)

Firm 1’s expected pro�ts evolve according to the di�erence equation

Vt = δ Vt+1 +
1
4 λ

(
1

1 − δ − δ Vt+1
)2
.

It is straightforward to see that the problem is stationary. Thus, the optimal probability
of innovation p∗t = p

∗
t+1 = p

∗∞ is

p∗∞ =
1

λ (1 − δ ) + (λ2 (1 − δ )2 + λ δ )1/2
,

and expected pro�t Vt = Vt+1 = V∞ is

V∞ =
2 λ (1 − δ ) + δ

1−δ − 2
(
λ2 (1 − δ )2 + λ δ )1/2

δ 2
.

The assumption λ > 1 guarantees that p∗∞ < 1. As λ increases, it becomes more costly to
invest in R&D, and the optimal probability of innovation and expected pro�t decrease.

By the envelope theorem,
∂Vt
∂δ
= pt

1
(1 − δ )2 + (1 − pt )Vt+1 + (1 − pt )δ

∂Vt+1
∂δ
,

which implies
∂V∞
∂δ
=
p∗∞

1
(1−δ )2 + (1 − p∗∞)V∞
1 − (1 − p∗∞)δ

> 0. (2)

Intuitively,V∞ increases with δ for two reasons: because the payo� of innovating increases,
and because the continuation value in case of a failed innovation increases.
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From (1) and (2) it follows that

∂p∗∞
∂δ
=

1
2 λ

(
1

(1 − δ )2 −V∞ − δ
∂V∞
∂δ

)
=

1
2 λ

( 1
1−δ − δ V∞

1 − (1 − p∗∞)δ

)
> 0.

An increase in δ has three e�ects on p∗t : the payo� from innovating increases, which tends
to increase p∗t ; the continuation payo� from not innovating increases, which tends to de-
crease p∗t ; and the continuation payo� from not innovating is discounted less, which tends
to decrease p∗t . The above equations show the �rst e�ect dominates the other two, and thus
p∗∞ increases with δ .

Next, I study a decision node in which the innovator has obtained and implemented the
innovation but does not have the complementary asset, and in which the imitator has not
imitated the innovator’s innovation.

A.2. Firm 1 has implemented the innovation but does not have the complementary
asset. As long as the imitator does not imitate the innovator, and the innovator does not
obtain the complementary asset, the innovator has a market pro�t of 1−α and the imitator
has a pro�t of 0. At time T , the innovator obtains the complementary asset, which implies
the imitator does not invest in R&D for t ≥ T (afterT , imitating would only lead to compet-
itive parity). Thus, at time T the innovator receives a discounted sum of payo�s of 1

1−δ and
the imitator obtains 0. If the imitator imitates the innovation at t < T , the innovator stops
developing the complementary asset, the imitator receives a discounted sum of payo�s of
α
1−δ , and the innovator obtains 0.14

LetWt be the imitator’s expected pro�t in period t . For t ≥ T , the imitator does not invest
in R&D, soWT =WT+1 = . . . = 0. For t < T ,Wt satis�es the Bellman equation

Wt = max
qt ∈[0,1]

(
qt

α

1 − δ + (1 − qt )δWt+1 − µ qt 2
)
.

The optimal probability of imitation at t is

q∗t =
1
2 µ

( α

1 − δ − δWt+1
)
. (3)

The assumption µ > α
2(1−δ ) guarantees that q∗t < 1 for all t . Firm 2’s expected pro�ts evolve

according to the di�erence equation

Wt = δWt+1 +
1
4 µ

( α

1 − δ − δWt+1
)2
.

14Recall the innovator incurs in a small cost while it develops the complementary asset. Thus, if the imitator
imitates the innovation before the innovator obtains the complementary asset, the innovator exits the market.
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This di�erence equation does not have an explicit solution, butWt can be obtained iter-
ating backwards fromWT = 0. For T − 1 and T − 2, I obtain

WT−1 =
1
4 µ

( α

1 − δ
)2
,

WT−2 = δ
1
4 µ

( α

1 − δ
)2
+

1
4 µ

(
α

1 − δ − δ
1
4 µ

( α

1 − δ
)2)2
.

Further values ofWt are easy to obtain but are notationally cumbersome. Lemma 1 describes
Wt and q∗t ’s dynamics.

Lemma 1 (Imitation dynamics). The imitator’s expected pro�tWt is decreasing in t < T and
the probability of imitation q∗t is increasing in t < T .

Proof. Working with the di�erenceWt −Wt−1 I obtain

Wt −Wt−1 = δWt+1 +
1
4 µ

( α

1 − δ − δWt+1
)2
−

(
δWt +

1
4 µ

( α

1 − δ − δWt

)2)
,

= δWt+1 +
1
4 µ

(( α

1 − δ
)2
− 2α δ
1 − δ Wt+1 + δ

2W 2
t+1

)
,

−δWt − 1
4 µ

(( α

1 − δ
)2
− 2α δ
1 − δ Wt + δ

2W 2
t

)
,

= δ

(
1 − α

2 µ (1 − δ )

)
(Wt+1 −Wt ) + δ 2

4 µ
(
W 2

t+1 −W 2
t

)
.

Given that 1 − α
2 µ (1−δ ) > 0,Wt+1 <Wt impliesWt <Wt−1. We know thatWT <WT−1. Thus,

Wt is decreasing for t < T . The result that q∗t is increasing in t follows from (3).

If the imitator fails to imitate the innovator’s innovation in a given period, she can try
again in the next period, until the innovator obtains the complementary asset. Thus, the
imitator’s expected pro�t decreases as the deadline T approaches. Given that the contin-
uation value of not imitating decreases with t , the imitator’s incentives to invest in R&D
increase with t . Figure 7 illustrates Lemma 1’s results for α = 0.5, δ = 0.75, µ = 2.5, λ = 5,
and T = 10.

A.3. Firm 1 has innovated but has not implemented the innovation. I consider now a
decision node in which the innovator has obtained the innovation but has not implemented
it. As explained in Section A.1, for t = T the implementation decision is trivial, since the
imitator will not invest in R&D if the innovation is implemented. For t < T , the imple-
mentation decision is a�ected by a trade-o� between short-term and long-term pro�tability:
implementing the innovation sooner increases product-market revenues but at the same
time enables imitation by the imitator.
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(a) α = 0.5, δ = 0.5, µ = 2.5, λ = 5, T = 10
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(b) α =0.5, δ = 0.75, µ = 2.5, λ = 5, T =10

Figure 7. Firm 2’s expected pro�t and optimal probability of imitation (α =
0.5, δ = 0.75, µ = 2.5, λ = 5, T = 10). At T = 10, the innovator obtains the
complementary asset soW10 = q

∗
10 = 0.

Let Zt be the innovator’s expected pro�t at t if it has implemented innovation at or before
t and the imitator has not imitated it yet. For t ≥ T , the imitator does not invest in R&D
and thus Zt =

1
1−δ . For t < T , Zt satis�es the recursion

Zt = (1 − q∗t ) (1 − α) + (1 − q∗t )δ Zt+1, (4)

where q∗t is the imitator’s optimal probability of imitation, obtained in Section A.2.
If the innovator innovates in period t < T , she must choose the time x ∈ {t, t + 1, t +

2, . . . ,T } at which to implement the innovation. If the innovator innovates in period t and
implements the innovation in x ≥ t , she obtains a discounted expected pro�t of δx−t Zx .
Firm 1’s implementation problem is thus to choose x to maximize δx−t Zx .

The following lemma shows the optimal implementation time for an innovation at time
t < T is either t or T , and characterizes the optimal implementation time as a function of
parameters.

Lemma 2 (Optimal implementation of innovations). There exists a threshold µ̂ such that if
µ ≥ µ̂ the innovation is implemented immediately (in the same period it is obtained), and if
µ < µ̂, there exists a threshold t∗ < T such that the innovation is implemented with delay (at
time T ) if it is obtained at t ∈ [t∗,T ) and is implemented immediately otherwise.

Proof. Note that δx−t Zx > δ
x+1−t Zx+1 if and only if Zx > δ Zx+1, and δx−t Zx < δ

x+1−t Zx+1

if and only if Zx < δ Zx+1. Let ht = 1 − q∗t . From (4),4 it follows that

Zx − δ Zx+1 = hx (1 − α) + hx δ Zx+1 − δ (hx+1 (1 − α) + hx+1 δ Zx+2),
= (hx − δ hx+1) (1 − α) + δ (hx Zx+1 − δ hx+1 Zx+2).
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The �rst term on the right hand side is positive because ht is decreasing by Lemma 1. If
Zx+1−δ Zx+2 > 0 the second term is also positive and thus Zx −δ Zx+1 is positive. Therefore,
if Zx ′−δ Zx ′+1 > 0 at some x′, it is positive for all x < x′. As x goes to −∞, Zx converges to a
stationary valueZ−∞ > 0 andZx−δ Zx+1 converges to (1−δ )Z−∞ > 0. Thus, Zx−δ Zx+1 > 0
if x is su�ciently far from T .

Given these results, there are two cases: (a) if ZT−1 −δ ZT ≥ 0 then Zx −δ Zx+1 > 0 for all
x < T − 1, and (b) if ZT−1 − δ ZT < 0 then there exists t∗ < T − 1 such that Zx − δ Zx+1 > 0
for x ≤ t∗ and Zx −δ Zx+1 < 0 for x > t∗. In case (a), δx−t Zx is decreasing in x for all x < T .
Thus, the optimal implementation time is t for all t < T . In case (b), δx−t Zx is decreasing in
x for x ≤ t∗ and increasing in x for x > t∗. Thus, it is optimal to implement an innovation
in the same period it is obtained if the innovation is obtained in t ≤ t∗, and it is optimal to
implement an innovation in T if it is obtained in t > t∗.

We know thatZT = 1
1−δ , and it is straightforward to obtain thatq∗T−1 =

α
2 µ (1−δ ) andZT−1 =(

1 − q∗T−1
) (1 − α + δ/(1 − δ )). Working with these expressions, we obtain thatZT−1−δ ZT ≥

0 if and only if (1−α) (1−δ )
δ+(1−α) (1−δ ) ≥ α

2 µ (1−δ ) , andZT−1−δ ZT < 0 if and only if (1−α) (1−δ )
δ+(1−α) (1−δ ) <

α
2 µ (1−δ ) .

Rearranging these inequalities, we obtain µ̂.

The proof of Lemma 2 shows δx−t Zx is convex in x for �xed t . Thus, for any t , the optimal
implementation time is either t or T . This result implies, in order to decide when to imple-
ment an innovation, we only need to compare Zt (the expected pro�t from implementing
the innovation immediately) and δT−t ZT = δT−t 1

1−δ (the expected pro�t from waiting until
T to implement the innovation).

In the proof of Lemma 2, I show the threshold for the imitation cost parameter that de-
termines whether implementation delays are possible is

µ̂ =
α (δ + (1 − α) (1 − δ ))
2 µ (1 − α) (1 − δ )2 ,

which increases with α and δ . This means that implementation delays become more likely
as the imitator’s initial resource advantage becomes more important or the discount factor
increases.

If the imitation cost parameter µ is large, the optimal investment in imitation of the im-
itator is small, so the innovator’s implementation trade-o� is resolved in favor of gaining
positive product-market revenues for a longer period of time. Thus, the innovator imple-
ments any innovation as soon as she obtains it.

For small µ, the resolution of the trade-o� depends on the time left until the innovator
obtains the complementary asset, and there exists a threshold t∗ < T such that the innovator
implements the innovation immediately if she obtains before t∗ and she implements it with
delay if she innovates at or after t∗.
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Intuitively, if t is su�ciently far fromT , implementing the innovation with delay yields a
low discounted payo�, and the innovator prefers to implement the innovation immediately.
If t is su�ciently close toT , the prize for having both innovation and complementary asset
is at hand, and the innovator chooses to implement the innovation with delay to prevent
imitation.

Figure 8 illustrates the results of Lemma 2 for di�erent values of the parameters. In Figure
8a, Zt ≥ δT−t 1

1−δ for all t , so it is always optimal to implement the innovation immediately.
In Figure 8b, Zt > δ

T−t 1
1−δ for t ≤ 4 and Zt < δ

T−t 1
1−δ for t > 4, so it is optimal to implement

the innovation immediately if the innovation is obtained before period 4, and it is optimal
to implement the innovation with delay if it is obtained afterwards.

t

Zt ,
δT−t
1−δ

1 2 3 4 5 6 7 8 9 10

Zt

δT−t 1
1−δ

1.2
1

2

(a) α = 0.5, δ = 0.5, µ = 2.5, λ = 5, T = 10

t

Zt ,
δT−t
1−δ

1 2 3 4 5 6 7 8 9 10

ZtδT−t 1
1−δ

2.1

3

4

(b) α =0.5, δ = 0.75, µ = 2.5, λ = 5, T =10

Figure 8. Comparison of payo�s with immediate (Zt ) and delayed (δT−t/(1−
δ )) implementation.

Next, I study the optimal investment in R&D for nodes in which the innovator has not
�nished development of the complementary asset.

A.4. Firm 1 has not innovated and does not have the complementary asset. For
t < T , the innovator’s investment in R&D depends on the solution to the optimal implemen-
tation time studied in the previous section. Let Yt be the expected pro�t from innovating at
time t < T , which by Lemma 2 is equal to

Yt = max
{
Zt , δ

T−t 1
1 − δ

}
.

For t < T , the innovator’s expected pro�t evolves according to the following Bellman
equation:

Vt = max
pt ∈[0,1]

(
pt Yt + (1 − pt )δ Vt+1 − λpt 2

)
.
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The optimal probability of innovation at t is

p∗t =
Yt − δ Vt+1

2 λ , (5)

and the expected pro�t of the innovator at t follows the di�erence equation

Vt = δ Vt+1 +
(Yt − δ Vt+1)2

4 λ . (6)

Lemma 3 (Innovation dynamics). Expected valuesZt ,Yt andVt are increasing in t < T . Given
an implementation threshold t∗, if t > t∗ the optimal probability of innovation p∗t is increasing
in t , and if t ≤ t∗, p∗t may be increasing or decreasing in t . The probability of innovation in
any period t < T is smaller than the probability of innovation in t ≥ T .

Proof. If the optimal implementation time at t isT , thenYt = δ
T−t 1

1−δ . By results in the proof
of Lemma 2, the optimal implementation time at t + 1 is alsoT , and thus Yt+1 = δT−t−1 1

1−δ =
δ−1Yt > Yt . Therefore, Yt is increasing in t . If the optimal implementation time at t is t ,
then Yt = Zt . Operating, we obtain

Zt+1 − Zt = ht+1(1 − α) + ht+1 δ Zt+2 − (ht (1 − α) + ht δ Zt+1) ,
= (ht+1 − ht )(1 − α) + ht+1 δ Zt+2 − ht δ Zt+1 + ht δ Zt+2 − ht δ Zt+2,

= (ht+1 − ht )(1 − α + δ Zt+2) + ht δ (Zt+2 − Zt+1).
From Lemma 1, ht+1 < ht . This result, together withht δ < 1, impliesZt+1−Zt < Zt+2−Zt+1.
Thus, Zt+2 − Zt+1 < 0 implies Zt+1 − Zt < 0. From Lemma 2, Zt converges to Z−∞ > 0 as
t → −∞. Thus, Zt+1 − Zt > 0 for all t . Otherwise, if Zt+1 − Zt < 0 for some t , then
0 > Zt+1 − Zt > Zt − Zt−1 > Zt−1 − Zt−2 . . . and Zt diverges as t goes to −∞. Therefore, Zt

and Yt are increasing in t .
In Section A.1 I showed that Vt = Vt+1 = V∞ for t ≥ T , where V∞ solves

V∞ = max
p∈[0,1]

(
p

1
1 − δ + (1 − p)δ V∞ − λp

2
)
.

Given that VT = V∞, for VT−1 we have

VT−1 = max
p∈[0,1]

(
p YT−1 + (1 − p)δ V∞ − λp2

)
.

It is clear that VT−1 < VT = V∞ given that YT−1 < 1
1−δ . Similarly, for VT−2 we have

VT−2 = max
p∈[0,1]

(
p YT−2 + (1 − p)δ VT−1 − λp2

)
,

and VT−2 < VT−1 given that YT−2 < YT−1 and VT−1 < VT = V∞. Iterating backwards, we
obtain that Vt < Vt−1 for all t < T .
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Next, I study the optimal dynamics of p∗t . From (6), we know

Vt+1 = δ Vt+2 +
(Yt+1 − δ Vt+2)2

4 λ ,

from which it follows that

Yt − δ Vt+1 = Yt − δ 2Vt+2 − δ (Yt+1 − δ Vt+2)
2

4 λ ,

= Yt − δ 2Vt+2 − δ (Yt+1 − δ Vt+2)
2

4 λ + δ Yt+1 − δ Yt+1,

= (Yt − δ Yt+1) + δ (Yt+1 − δ Vt+2) − δ (Yt+1 − δ Vt+2)
2

4 λ .

If Yt = δT−t 1
1−δ then Yt+1 = δ

T−t−1 1
1−δ = δ

−1Yt , which implies Yt − δ Vt+1 < Yt+1 − δ Vt+2.
Thus, p∗t < p∗t+1 by (5). If Yt = Zt then the �rst term in the right hand side may be positive
or negative, which implies Yt − δ Vt+1 may be smaller or larger than Yt+1 − δ Vt+2.

Finally, to show p∗t < p∗∞ for all t < T , note that from (5) and (6) we can write

Vt+1 −Vt = Vt+1 − δ Vt+1 − (Yt − δ Vt+1)
2

4 λ = (1 − δ )Vt+1 − λp∗t 2.

Given that Vt is increasing for t < T and VT = V∞, it follows that

p∗t <
( (1 − δ )Vt+1

λ

)2
<

( (1 − δ )V∞
λ

)2
for t < T . Introducing V∞ (obtained in Section A.1) into this expression, I obtain

p∗t <
©«
(1 − δ )

(
2 λ (1 − δ ) + δ

1−δ − 2
(
λ2 (1 − δ )2 + λ δ )1/2)

λ δ 2

ª®®¬
2

.

The result that p∗t < p∗∞ follows because the right hand side of this inequality is always
smaller than p∗∞, obtained in Section A.1.

As t moves closer toT , the expected value of a successful innovation, Yt , and the expected
pro�t from investing in R&D,Vt , increase. By (5), the e�ect on the probability of innovation
depends on the relative impact of changes in Yt and δ Vt+1: moving closer to T implies
the payo� from a successful innovation increases, which tends to increase the innovator’s
investment in R&D; but the continuation payo� from failing to obtain an innovation also
increases, which tends to decrease the innovator’s investment. Lemma 3 shows the second
e�ect dominates the �rst for some values of the parameters, in which case p∗t may decrease
with t .

Regardless of the result that p∗t may be decreasing in t , Lemma 3 shows the probability of
innovation is always larger after the innovator obtains the complementary asset, which is an
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intuitive result given the complementarity between the innovation and the complementary
asset.

Figure 9 shows the probability of innovation for di�erent values of the parameters. In
Figure 9a, the probability is increasing until t = 10, and constant after that. In Figure 9b,
the probability is decreasing until t = 4, increasing for t between 5 and 10, and constant
after that. Figure 10 shows the innovator’s expected pro�t Vt for di�erent values of the
parameters. As expected from the theoretical results, Vt is increasing until T = 10, and is
constant thereafter.
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(a) α = 0.75, δ = 0.75, µ = 2.5, λ = 5, T = 10.
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(b) α = 0.5, δ = 0.75, µ = 2.5, λ = 5, T = 10.

Figure 9. Firm 1’s optimal probability of innovation.
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(a) α = 0.75, δ = 0.75, µ = 2.5, λ = 5, T = 10.
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(b) α = 0.5, δ = 0.75, µ = 2.5, λ = 5, T = 10.

Figure 10. Firm 1’s expected pro�t.
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A.5. Proof of Proposition 1. Existence and uniqueness follow from this being a dynamic
game of complete information. Other results follow from Lemmas 1, 2 and 3.

Appendix B. Solution of the model with licensing

B.1. Proof of Proposition 2. Working with the inequality δ/(1 − δ ) > R1
T−1, obtained in

the main text, I obtain that marketing the innovation is better than licensing if

µ < µ̃ =
α (2 − α (1 − 2δ ))
4 (2 − α) (1 − δ )2 .

The right hand side of this inequality is always smaller than µ̂ (given in Lemma 2) and is
larger than 1

2 (1−δ ) only if δ > 1/4 and

α > α̃ =
2 − δ +

√
δ (8 − 7δ )

1 − 2δ .

The result follows.

B.2. Recursive formulation for negotiated payo�s. In the main text, I explain that the
innovator’s best alternative to an agreement in t < T − 1 is to implement the innovation
in t and try to negotiate another agreement in t + 1, and the imitator’s best alternative is
to try to imitate the innovation in t and, if she fails to imitate in t , try to negotiate another
agreement in t+1. If negotiations break down, �rm 2’s optimal investment in R&D in period
t < T − 1 is

s∗t = argmax
st ∈[0,1]

(
st

α

1 − δ + (1 − st )δ R
2
t+1 − µ s2t

)
=

1
2µ

( α

1 − δ − δ R
2
t+1

)
.

Given s∗t , outside options are

O1
t = (1 − s∗t )

(
1 − α + δ R1

t+1
)
,

O2
t = s∗t

α

1 − δ + (1 − s
∗
t )δ R2

t+1 − µ s∗t 2,

and negotiated payo�s are

R1
t =

1
2 O

1
t +

1
2

(
1

1 − δ −O
2
t

)
,

R2
t =

1
2 O

2
t +

1
2

(
1

1 − δ −O
1
t

)
.

I obtain the values of O1
t , O2

t , R1
t and R2

t iterating backwards from R1
T−1 and R2

T−1.

Appendix C. Solution of the model with endogenous resource development

C.1. Proof of Proposition 3. Proposition 3 follows from lemma 4 below, which presents
additional results not included in the main text.

30



For concreteness, I make the dependence of T explicit by including it as an index in all
endogenous variables. For example, Vt,T and p∗t,T stand for �rm 1’s expected payo� and
optimal probability of innovation at t when developing time is T . Likewise, let t∗T ≤ T

be the threshold period for implementing an innovation with delay (i.e., given T , if �rm 1
innovates at t ≤ t∗T , she implements the innovation immediately; and if she innovates at
t > t∗T , she implements the innovation in T ).

The expected time to innovation at time t given developing time T is

Et,T = p
∗
t,T 1 + (1 − p∗t,T )p∗t+1,T 2 + (1 − p∗t,T ) (1 − p∗t+1,T )p∗t+2,T 3 + . . .

As we saw in Section A.1, for t ≥ T the probability of innovation is constant and equal to
p∞, which means that Et,T = 1

p∞ for t ≥ T . For t < T , the expected time to innovation can
be calculated recursively from Et,T = 1 + (1 − p∗t,T )Et+1,T .

The overall probability of imitation in {t, t+1, . . . ,T } is the probability that �rm 2 imitates
�rm 1’s innovation from period t onwards. This probability is given by

Qt,T = 1 − (1 − q∗t,T ) (1 − q∗t+1,T ) . . . (1 − q∗T−1,T ) (7)

if t ≤ t∗T , and is equal to zero if t > t∗T . Likewise, the probability of an implementation delay
is the probability that �rm 1 implements an innovation with delay. If t ≥ T , the probability
of a delay in implementation is equal to zero, since any innovation will be implemented as
soon as it is obtained. If t∗T < t < T , the probability is

Dt,T = 1 − (1 − p∗t,T ) (1 − p∗t+1,T ) . . . (1 − p∗T−1,T ),
since in this case there would be an implementation delay only if �rm 1 innovates beforeT .
Finally, if t ≤ t∗T , the probability of an implementation delay is

Dt,T = (1 − p∗t,T ) (1 − p∗t+1,T ) . . . (1 − p∗t∗T ,T )Dt∗T+1,T

since in this case there would be an implementation delay only if �rm 1 does not innovate
at or before t∗T , and innovates before T .

Given that for any t,T , equilibrium decisions depend on the di�erenceT −t (for example,
the problem at t = 4 when T = 6 is equivalent to the problem at t = 7 when T = 9), it
follows that q∗t,T = q∗t+1,T+1, Wt,T =Wt+1,T+1, Zt,T = Zt+1,T+1, Yt,T = Yt+1,T+1, p∗t,T = p∗t+1,T+1,
Vt,T = Vt+1,T+1, t∗T+1 = t∗T + 1, Et,T = Et+1,T+1, Qt,T = Qt+1,T+1, and Dt,T = Dt+1,T+1.

The following lemma shows the e�ect of changes in T on the equilibrium.

Lemma4 (E�ects of a change in development time). Given t ≤ T , the probability of imitation
q∗t,T and expected valuesZt,T ,Yt,T andVt,T are decreasing inT ; and the expected imitator’s pro�t
Wt,T , implementation threshold t∗T , and overall probability of imitationQt,T are increasing inT .
If t > t∗T + 1, then p

∗
t,T decreases withT and the expected time to innovation Et,T increases with
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T . If t ≤ t∗T +1, thenp
∗
t,T may increase or decrease withT . The probability of an implementation

delay Dt,T decreases with T if t ≤ t∗T + 1, and increases with T if t∗T + 1 < t ≤ T .

Proof. From Lemma 1 we know that q∗t,T is increasing in t for �xedT , i.e., q∗t+1,T > q∗t,T . Given
that q∗t,T = q

∗
t+1,T+1, it follows that

q∗t,T = q
∗
t+1,T+1 > q∗t,T+1.

Thus, q∗t,T is decreasing in T for �xed t . Similarly, from Lemma 1 we know that W ∗t,T is
decreasing in t for �xedT , and from Lemma 3 we know thatZt,T ,Yt,T , andVt,T are increasing
in t for �xed T ; so W ∗t,T is increasing and Zt,T , Yt,T , and Vt,T are decreasing in T for �xed t .
Given that t∗T = t∗T+1 − 1, then t∗T+1 − t∗T = 1 so t∗T is increasing in T . From (7), it follows that

1 −Qt−1,T = (1 −Qt,T ) (1 − q∗t−1,T )
for t ≤ t∗T , which implies Qt−1,T > Qt,T . Given that Qt−1,T = Qt,T+1, it follows that Qt,T+1 =

Q∗t−1,T > Qt,T , so Qt,T is increasing in T if t ≤ t∗T . If t > t∗T , then either t > t∗T+1, in which
case Qt,T = Qt,T+1 = 0 and Qt,T is weakly increasing in T , or t ≤ t∗T+1, in which case
Qt,T+1 > Qt,T = 0 and Qt,T is strictly increasing in T . By Lemma 3, if t > t∗T + 1, then
p∗t−1,T < p∗t,T , which implies p∗t,T+1 < p∗t,T , so p∗t,T is decreasing in T . Also, given that

Et,T − Et−1,T = (1 − p∗t,T )Et+1,T − (1 − p∗t−1,T )Et,T ,
if Et+1,T < Et,T and p∗t,T > p∗t−1,T , then Et,T < Et−1,T . It is straightforward to show ET ,T <

ET−1,T . Thus, Et−1,T is decreasing for t > t∗T + 1, which implies Et,T increasing in T for
t > t∗T + 1. If t ≤ t∗T + 1, p∗t,T may be increasing or decreasing in T . Finally, if t ≤ t∗T ,
the probability that there is no delay in implementation is equal to the probability that the
innovator innovates at of before t∗T , which increases with T .

C.2. Proof of Proposition 4. Given that cT = 0 forT ≥ 1, the innovator will never choose
a development time greater than 1. From Section A.1 we know that

V0,0 = V1,1 = V∞ =
2 λ (1 − δ ) + δ

1−δ − 2
(
λ2 (1 − δ )2 + λ δ )1/2

δ 2
,

and from Section A.4 we know that

V0,1 = δ V1,1 +

(
Y0,1 − δV1,1

)2
4λ = δ V∞ +

(
Y0,1 − δV∞

)2
4λ ,

where

Y0,1 = max
{
Z0,1,

δ

1 − δ

}
= max

{(
1 − α

2 µ (1 − δ )

) (
1 − α + δ

1 − δ

)
,

δ

1 − δ

}
.
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Firm 1 will choose T = 0 over T = 1 if

∆V = V0,0 −V0,1 = (1 − δ )V∞ −
(
Y0,1 − δV∞

)2
4λ ≥ c0.

and will optimally choose T = 1 otherwise. If µ < µ̂, which implies Y0,1 = δ
1−δ , then

∂∆V

∂λ
= (1 − δ ) ∂V∞

∂λ
+

(
δ

1−δ − δV∞
)

4λ
∂V∞
∂λ
+

(
δ

1−δ − δV∞
)2

4λ2 ,

=
δ + (1 − δ )2λ − 2

√
λ
√
δ + (1 − δ )2λ

4λ2 (δ + (1 − δ )2λ) .

For ∂∆V∂λ ≥ 0, we need

δ + (1 − δ )2λ ≥ 2
√
λ
√
δ + (1 − δ )2λ,√

δ + (1 − δ )2λ ≥ 2
√
λ,

δ + (1 − δ )2λ ≥ 4λ,

δ ≥ (4 − (1 − δ )2) λ,
which is not possible, given that δ < 1 and λ > 1. Thus, ∂∆V∂λ < 0. Following similar steps, it
is easy to show ∂∆V

∂λ < 0 if µ > µ̂, which impliesY0,1 = Z0,1. The �rst result in the proposition
follows.

For the results concerning α and µ, note that if µ < µ̂, which implies Y0,1 = δ
1−δ , ∆V does

not depend on α and µ. If µ > µ̂, which impliesY0,1 = Z0,1, on the other hand, ∆V depends on
α and µ through Z0,1 =

(
1 − α

2 µ (1−δ )
) (

1 − α + δ
1−δ

)
, which is decreasing in α and increasing

in µ. Thus, ∆V is increasing in α and decreasing in µ.
Finally, if µ < µ̂, which implies Y0,1 = δ

1−δ , then

∂∆V

∂δ
=

2
√
λ
√
δ + (1 − δ )2λ − δ − 2(1 − δ )λ
2δ 2
√
λ
√
δ + (1 − δ )2λ

≥ 0,

from which the result concerning δ is obtained.

Appendix D. Solution of the model with low imitation cost

D.1. Proof of Proposition 5. From (3), if
1
2 µ

( α

1 − δ − δWt+1
)
≥ 1,

then q∗t = 1. Given thatWT = 0, for t = T − 1 the condition becomes
1
2 µ

( α

1 − δ
)
≥ 1 ⇔ µ ≤ α

2(1 − δ ),
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in which caseWT−1 = α
1−δ − µ. For t = T − 2, the condition is
1
2 µ

( α

1 − δ − δ
( α

1 − δ − µ
))
≥ 1 ⇔ µ ≤ α

2 − δ .

The same analysis applies to periods t < T − 2. Thus, if µ ≤ α
2−δ then q∗t = 1 for all t < T .

If licensing is not possible and the innovator implements the innovation at time t < T ,
then it is imitated with probability 1 and obtains a discounted payo� of zero. Thus, the
innovator will implement any innovation obtained at t < T in period T .

If licensing is possible, and the innovator approaches the imitator in period t to negotiate
a licensing agreement, she obtains a negotiated payo� of

R1 = 0 + 1
2

(
1

1 − δ −
α

1 − δ + µ
)
=

1 − α + µ (1 − δ )
2 (1 − δ ) .

The innovator will license the innovation if

δT−t
1

1 − δ <
1 − α + µ (1 − δ )

2 (1 − δ ) ,

δT−t <
1 − α + µ (1 − δ )

2 ,

t < T − logδ
(
1 − α + µ (1 − δ )

2

)
,

where logδ (x) is the base δ logarithm of x . Given this result, the overall probability of
licensing is the probability that the innovator innovates before t̃ = T − logδ

(
1−α+µ (1−δ )

2

)
,

that is
∏t̃

t=0 p
∗
t , where

p∗t =
max

{
1−α+µ (1−δ )

2 (1−δ ) , δ
T−t 1

1−δ
}
− δ Vt+1

2 λ .

As µ increases or α decreases, t̃ increases and p∗t increases for t ∈ {0, 1, . . . t̃}. Thus, the
overall probability of innovation increases. Finally, it is straightforward to see that

lim
δ→1

(
T − logδ

(
1 − α + µ (1 − δ )

2

))
= −∞.

Thus, t̃ can be made as small as wanted by making δ su�ciently large.
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